Steady State Vapor Bubble in Pool Boiling
نویسندگان
چکیده
Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.
منابع مشابه
Momentum effects in steady nucleate pool boiling during microgravity.
Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a...
متن کاملExperimental Study for Investigating the Mechanism of Heat Transfer near the Critical Heat Flux in Nucleate Pool Boiling
Heat transfer coefficient in nucleate pool boiling near critical heat flux at least one orderhigher than the convectional heat transfer modes. In this paper, an experimental setup isdesigned and fabricated to investigate the mechanism of heat transfer from boiling surface tobulk liquid near critical heat flux. The images of pool boiling near the high heat flux regionreveals that the individual ...
متن کاملSome parameter boundaries governing microgravity pool boiling modes.
Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a...
متن کاملNumerical Simulation and Experimental Validation of the Dynamics of a Single Bubble During Pool Boiling Under Constant and Time-Varying Reduced Gravity Conditions
The numerical simulation and experimental validations of the growth and departure of a single bubble on a horizontal heated surface during pool boiling under reduced gravity conditions have been performed here. A finite difference scheme is used to solve the equations governing mass, momentum and energy in the vapor liquid phases. The vaporliquid interface is captured by level set method, which...
متن کاملNumerical Simulation of Pool Boiling for Steady State and Transient Heating
It’s believed that the macrolayer plays an important role in nucleate and transition boiling heat transfer at high heat flux. Many experiments have been carried out to support the macrolayer evaporation model, however, little has been conducted in the numerical simulation of boiling heat transfer. In this study, based on the macrolayer evaporation model of Maruyama et al. (1992), a numerical si...
متن کامل